Hướng dẫn sử dụng phương pháp về Trục thời gian trong bài tập DĐĐH Vật lý 12 | Doanhnhan.edu.vn

PHƯƠNG PHÁP SỬ DỤNG TRỤC THỜI GIAN

TRONG BÀI TẬP DĐĐH VẬT LÝ 12

1. Lý thuyết trọng tâm và phương pháp giải

Thời gian vật đi từ VTCB đến li độ x hoặc ngược lại là  (t = frac{1}{omega }arcsin frac{{left| x right|}}{A})

Thời gian vật đi từ biên đến li độ x hoặc ngược lại thì  (t = frac{1}{omega }arccos frac{{left| x right|}}{A})

 Chứng minh: Khi vật đi từ vị trí x đến vị trí cân bằng, góc vật quét được là α

Ta có:  (sin alpha = frac{{OP}}{A} = left| {frac{x}{A}} right| Rightarrow alpha = arcsin left| {frac{x}{A}} right|)

Do đó  ({t_1} = frac{1}{omega }arcsin frac{{left| x right|}}{A})

Tương tự khi vật đi từ vị trí biên về vị trí có li độ x vật quét được 1 góc là  β

Ta có:  

(begin{array}{l} cos beta = left| {frac{x}{A}} right| Rightarrow beta = arccos left| {frac{x}{A}} right|\ Rightarrow t = frac{1}{omega }arccos left| {frac{x}{A}} right| end{array})

Ví dụ mẫu 1: Một vật dao động điều hòa với phương trình (x = 8cos left( {frac{{4pi t}}{3} – frac{pi }{2}} right)left( {cm} right)) . Thời gian ngắn nhất vật đi từ điểm có li độ ({x_1} = – 4sqrt 3 cm) đến điểm có li độ ({x_2} = 4cm) là

Lời giải

Thời gian ngắn nhất vật đi từ điểm có li độ ({x_1} = – 4sqrt 3 cm) đến điểm có li độ ({x_2} = 4cm)  bằng tổng thời gian ngắn nhất vật đi từ  ({x_1} to ) VTCB và từ VTCB ( to {x_2}) 

Do đó ta có:  (t = {t_1} + {t_2} = frac{1}{omega }arcsin frac{{left| {{x_1}} right|}}{A} + frac{1}{omega }arcsin frac{{left| {{x_2}} right|}}{A})

Hay  (t = frac{1}{omega }left( {arcsin frac{{left| {{x_1}} right|}}{A} + arcsin frac{{left| {{x_2}} right|}}{A}} right) = frac{3}{{4pi }}left( {arcsin frac{{sqrt 3 }}{2} + arcsin frac{1}{2}} right) = 0,375s)

Ghi nhớ các khoảng thời gian đặc biệt:

Vật dao động điều hòa với biên độ A và chu kì T. Khoảng thời gian ngắn nhất vật đi từ:

Vị trí có li độ x = 0 đến x = A hoặc ngược lại là  (Delta t = frac{T}{4})

READ:  Cấu tạo và tính chất của xương | Doanhnhan.edu.vn

Vị trí có li độ x = 0 đến (x = pm frac{A}{2})  hoặc ngược lại là  (Delta t = frac{T}{12})

Vị trí có li độ x = 0 đến (x = pm frac{A}{{sqrt 2 }}) hoặc ngược lại là  (Delta t = frac{T}{8})

Vị trí có li độ x = 0 đến (x = pm frac{{Asqrt 3 }}{2}) hoặc ngược lại là  (Delta t = frac{T}{6})

Vị trí có li độ (x = frac{A}{2}) đến x = A hoặc ngược lại là  (Delta t = frac{T}{6})

Vị trí có li độ (x = frac{{Asqrt 3 }}{2}) đến x = A hoặc ngược lại là  (Delta t = frac{T}{12})

Ta có sơ đồ các khoảng thời gian đặc biệt trong dao động điều hòa:

Từ các phương pháp trên khi làm bài toán về thời gian trong dao động điều hòa ta nên vận dụng một cách linh hoạt các phương pháp đã được học cho mỗi bài toán.

Ví dụ mẫu 2: Một vật dao động điều hòa dọc theo trục Ox với phương trình  . (x = 10cos left( {frac{{4pi }}{3}t – frac{{2pi }}{3}} right)cm)Tìm khoảng thời gian ngắn nhất để vật di chuyển trong từng trường hợp sau:

a) Từ vị trí cân bằng đến điểm có li độ x = 5cm

b) Từ vị trí biên dương đến điểm có li độ (x = 5sqrt 3 cm) 

c) Từ vị trí có li độ (x = – 5sqrt 2 cm) đến điểm có li độ x = 5cm

d) Từ điểm có li độ x = -5cm đến điểm có li độ  (x = -5sqrt 3 cm)

e) Từ điểm có li độ (x = 5sqrt 2 cm) đến điểm có li độ (x = 5sqrt 3 cm)

f) Từ vị trí cân bằng đến vị trí có li độ x = 7cm

g) Từ vị trí biên âm đến vị trí có li độ x = 3cm

h) Từ vị trí có li độ x = 5 cm theo chiều âm đến vị trí có li độ x = -2cm theo chiều dương

Lời giải

Ta có:  (T = frac{{2pi }}{omega } = 1,5s)

Dựa vào các khoảng thời gian đặt biệt ta có:

a) Thời gian vật đi từ vị trí cân bằng (x = 0) đến điểm có li độ (x = 5cm = frac{A}{2}) là:

(Delta t = frac{T}{{12}} = frac{{1,5}}{{12}} = 0,125left( s right))

b) Thời gian vật đi từ vị trí biên dương (x = A) đến điểm có li độ (x = 5sqrt 3 = frac{{Asqrt 3 }}{2}) là:

READ:  Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SAD là tam giác đều và nằm trong mặt phẳng vuông góc với (ABCD). | Doanhnhan.edu.vn

(Delta t = frac{T}{{12}} = frac{{1,5}}{{12}} = 0,125left( s right))

c) Thời gian vật đi từ vị trí  có li độ  (x = -5sqrt 2 = frac{-A}{{sqrt 2 }}) đến điểm có li độ (x = 5cm = frac{A}{2}) là:

(Delta t = frac{T}{8} + frac{T}{{12}} = 0,3125left( s right))

d) Thời gian vật đi từ điểm  có li độ (x = – 5cm = frac{{ – A}}{2})  đến điểm có li độ (x = -5sqrt 3 = -frac{{Asqrt 3 }}{2}) là:

(Delta t = frac{T}{6} – frac{T}{{12}} = frac{T}{{12}} = 0,125left( s right))

e) Thời gian vật đi từ điểm  có li độ  (x = 5sqrt 2 = frac{A}{{sqrt 2 }}) đến điểm có li độ (x = 5sqrt 3 = frac{{Asqrt 3 }}{2}) là:

(Delta t = frac{T}{6} – frac{T}{8} = frac{T}{{24}} = 0,0625left( s right))

f) Thời gian vật đi từ vị trí cân bằng đến vị trí có li độ x = 7cm là:

(Delta t = frac{1}{omega }arcsin frac{{left| x right|}}{A} = frac{3}{{4pi }}arcsin frac{7}{{10}} = 0,185left( s right))

g) Thời gian vật đi từ vị trí biên âm đến vị trí có li độ x = 3cm là:

(Delta t = frac{T}{4} + frac{1}{omega }arcsin frac{{left| x right|}}{A} = frac{{1,5}}{4} + frac{3}{{4pi }}arcsin frac{3}{{10}} = 0,448left( s right))

h) Thời gian vật đi từ vị trí có li độ x = 5cm theo chiều âm đến vị trí có li độ x = -2cm theo chiều dương là:

(Delta t = frac{T}{{12}} + frac{T}{4} + frac{1}{omega }arccos left| {frac{x}{A}} right| = frac{T}{3} + frac{3}{{4pi }}arccos left( {0,2} right) = 0,827left( s right))

2. Ví dụ minh họa

Ví dụ 1: Một vật dao động điều hòa với phương trình  (x = 8cos left( {2pi t} right)left( {cm} right)) . Khoảng thời gian ngắn nhất vật đi từ điểm có li độ (x = 4sqrt 2 cm) đến vị trí vật có vận tốc (8pi ,cm/s)

A. (frac{1}{{12}}s)                             B.  (frac{5}{{24}}s)                                 

C.  (frac{7}{{24}}s)                              D.  (frac{1}{{24}}s)

Lời giải

Khi vật có vận tốc  (v = 8pi cm/s = frac{{{v_{max }}}}{2}.)

Lại có:  ({left( {frac{x}{A}} right)^2} + {left( {frac{v}{{{v_{max }}}}} right)^2} = 1 Rightarrow x = frac{{ pm Asqrt 3 }}{2})

Do đó, khi vật có vận tốc là (8pi ,cm/s) thì  :  (left{ begin{array}{l} v > 0\ x = frac{{ pm Asqrt 3 }}{2} end{array} right.)

Do đó : (Delta {t_{min }} = {t_{left( {frac{{Asqrt 2 }}{2} to frac{{Asqrt 3 }}{2}} right)}} = frac{T}{6} – frac{T}{8} = frac{T}{{24}} = frac{1}{{24}}s) .

Chọn D

Ví dụ 2: Một vật dao động điều hoà, biết khoảng thời gian ngắn nhất để vật đi từ điểm có li độ ({x_1}, = – A) đến điểm có li độ ({x_2} = frac{{Asqrt 3 }}{2}) là 0,5s. Chu kì dao động của vật là

A. T = 1s                            B. T = 1,5s                             

C. T = 2s                            D. T = 1,2s

READ:  Công nghiệp hóa thời kỳ trước đổi mới | Doanhnhan.edu.vn

Lời giải

Ta có:  

(begin{array}{l} {t_{left( { – A to frac{{Asqrt 3 }}{2}} right)}} = {t_{left( { – A to 0} right)}} + {t_{left( {0 to frac{{Asqrt 3 }}{2}} right)}} = frac{T}{4} + frac{T}{6} = 0,5\ Rightarrow T = 1,2s end{array})

Chọn D

Ví dụ 3: [Trích đề thi đại học năm 2013]. Một vật nhỏ dao động điều hoà theo phương trình (x = Acos 4pi t)  (t tính bằng giây). Tinh từ thời điểm t = 0, khoảng thời gian ngắn nhất để gia tốc của vật bằng một nửa gia tốc cực đại là

A. 0,083s                           B. 0,104s                               

C. 0,167s                           D. 0,125s

 Lời giải

Cách 1: Sử dụng phương pháp đường tròn

Ta có: tại  (t = 0 Rightarrow x = A,left| a right| = frac{{{a_{max }}}}{2} Rightarrow left| x right| = frac{A}{2})

Tại thời điểm ban đầu  (varphi = 0)

Như vậy thời gian ngắn nhất để gia tốc của vật bằng một nửa gia tốc cực đại bằng thời gian vật đi từ x = A đến  (x = frac{A}{2})

Ta có:  

(begin{array}{l} cos alpha = frac{1}{2} Rightarrow alpha = frac{pi }{3}\ Rightarrow {t_{min }} = frac{alpha }{omega } = frac{1}{{12}}left( s right) end{array})

Chọn A

Cách 2: Sử dụng trục thời gian

Ta có: tại (t = 0 Rightarrow x = A,left| a right| = frac{{{a_{max }}}}{2} Rightarrow left| x right| = frac{A}{2}).

( Rightarrow Delta {t_{min }} = {t_{left( {A to frac{A}{2}} right)}} = frac{T}{6} = frac{1}{2}left( s right))

Chọn A

—Để xem tiếp nội dung các bài tập về Trục thời gian trong bài tập DĐĐH Vật lý 12, các em vui lòng đăng nhập vào trang hoc247.net để xem online hoặc tải về máy tính—

 

Trên đây là một phần trích đoạn nội dung Hướng dẫn sử dụng phương pháp về Trục thời gian trong bài tập DĐĐH Vật lý 12. Để xem toàn bộ nội dung các em chọn chức năng xem online hoặc đăng nhập vào trang hoc247.net để tải tài liệu về máy tính.

Hy vọng tài liệu này sẽ giúp các em học sinh ôn tập tốt và đạt thành tích cao trong học tập .

Các em quan tâm có thể tham khảo thêm các tài liệu cùng chuyên mục:

Chúc các em học tập tốt !

Xem thêm bài viết thuộc chuyên mục: Học tập