Công Thức Hệ Thức Lượng Trong Tam Giác, Hệ Thức Lượng Trong Tam Giác

Bài viết sẽ chia sẻ với các bạn các hệ thức lượng trong tam giác thường, và trường hợp đặc biệt là trong tam giác vuông, đồng thời là những ứng dụng, các dạng bài toán và phương pháp giải bài tập về các hệ thức lượng trong tam giác.

Đang xem: Hệ thức lượng trong tam giác

Các hệ thức lượng trong tam giác

Định lý cosin

Trong tam giác ABC bất kỳ với BC = a, CA = b, AB = c, ta có:

a2 = b2 + c2 – 2b.c. cos A

b2 = a2 + c2 – 2a.c. cos B

c2 = a2 + b2 – 2a.b. cos C

Hệ quả

*

Áp dụng: Tính độ dài đường trung tuyến của tam giác.

Cho tam giác ABC có độ dài cạnh BC = a, CA = b, AB = c. Gọi ma, mb, mc lần lượt là độ dài các đường trung tuyến vẽ từ đỉnh A, B, C của tam giác. Ta có:

*

Định lý Sin

Trong tam giác ABC bất kỳ với BC = a, CA = b, AB = c, và R là bán kính đường tròn ngoại tiếp. Ta có:

*

Công thức tính diện tích tam giác.

Xem thêm: Hình Nền Powerpoint Đẹp – Tải Ngay Bộ Chuyên Nghiệp

Với ha, hb, hc lần lượt là đường cao của tam giác ABC vẽ từ các đỉnh A, B, C, ta có diện tích tam giác ABC:

READ:  Thông Tin Tuyển Sinh Trường Đại Học Ngoại Ngữ Huế, Đại Học Ngoại Ngữ

*

Với, R là bán kính đường tròn loại tiếp, r là bán kính đường tròn nội tiếp, p là nửa chu vi của tam giác ABC, diện tích của tam giác ABC được tính theo một trong các công thức sau:

*

*

Công thức Heron còn có thể được viết lại như sau:

*

Hệ thức lượng trong tam giác vuông

Cho tam giác ABC vuông góc tại đỉnh A (góc A bằng 90o) như hình bên dưới:

*

Ta có:

*

Giải tam giác

Phương pháp:

Một tam giác thường được xác định khi biết 3 yếu tố. Trong các bài toán giải tam giác, người ta thường cho ta giác với 3 yếu tố như sau:

Biết một cạnh và 2 góc kề cạnh đó (g, c, g)Biết một góc và 2 cạnh kề góc đó (c, g, c)Biết 3 cạnh (c, c, c)

Để tìm các yếu tố còn lại của tam giác, người ta thường sử dụng các định lý cosin, định lý sin, định lý tổng 3 góc của một tam giác bằng 180o và đặc biệt có thể sử dụng các hệ thức lượng trong tam giác vuông.

Lưu ý: 

Một tam giác giải được khi ta biết 3 yếu tố của nó, trong đó phải có ít nhất một yếu tố độ dài (tức là yếu tố góc không được quá 2)Việc giải tam giác được sử dụng vào các bài toán thực tế, nhất là các bài toán đo đạc.

Xem thêm: 【7/2021】Top #10 Đặt Tên Con Trai Họ Lương Nên Đặt Tên Con Là Gì?

Trên đây là những kiến thức cơ bản về hệ thức lượng trong tam giác thường và tam giác vuông, cũng như phương pháp giải tam giác. Hi vọng qua những kiến thức này, bạn sẽ nắm hoàn thành tốt các bài tập này.

Xem thêm bài viết thuộc chuyên mục: Thông tin tổng hợp